Expression of Flavone Synthase II and Flavonoid 3′-Hydroxylase Is Associated with Color Variation in Tan-Colored Injured Leaves of Sorghum

نویسندگان

  • Hiroshi Mizuno
  • Takayuki Yazawa
  • Shigemitsu Kasuga
  • Yuji Sawada
  • Hiroyuki Kanamori
  • Yuko Ogo
  • Masami Yokota Hirai
  • Takashi Matsumoto
  • Hiroyuki Kawahigashi
چکیده

Sorghum (Sorghum bicolor L. Moench) exhibits various color changes in injured leaves in response to cutting stress. Here, we aimed to identify key genes for the light brown and dark brown color variations in tan-colored injured leaves of sorghum. For this purpose, sorghum M36001 (light brown injured leaves), Nakei-MS3B (purple), and a progeny, #7 (dark brown), from Nakei-MS3B × M36001, were used. Accumulated pigments were detected by using high-performance liquid chromatography: M36001 accumulated only apigenin in its light brown leaves; #7 accumulated both luteolin and a small amount of apigenin in its dark brown leaves, and Nakei-MS3B accumulated 3-deoxyanthocyanidins (apigeninidin and luteolinidin) in its purple leaves. Apigenin or luteolin glucoside derivatives were also accumulated, in different proportions. Differentially expressed genes before and after cutting stress were identified by using RNA sequencing (RNA-seq). Integration of our metabolic and RNA-seq analyses suggested that expression of only flavone synthase II (FNSII) led to the synthesis of apigenin in M36001, expression of both FNSII and flavonoid 3'-hydroxylase (F3'H) led to the synthesis of apigenin and luteolin in #7, and expression of both flavanone 4-reductase and F3'H led to the synthesis of 3-deoxyanthocyanidins in Nakei-MS3B. These results suggest that expression of FNSII is related to the synthesis of flavones (apigenin and luteolin) and the expression level of F3'H is related to the balance of apigenin and luteolin. Expression of FNSII and F3'H is thus associated with dark or light brown coloration in tan-colored injured leaves of sorghum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The wheat Lr34 multipathogen resistance gene confers resistance to anthracnose and rust in sorghum

The ability of the wheat Lr34 multipathogen resistance gene (Lr34res) to function across a wide taxonomic boundary was investigated in transgenic Sorghum bicolor. Increased resistance to sorghum rust and anthracnose disease symptoms following infection with the biotrophic pathogen Puccinia purpurea and the hemibiotroph Colletotrichum sublineolum, respectively, occurred in transgenic plants expr...

متن کامل

Enzymatic Synthesis of 4'- and 3 ' ,4 -Hydroxylated Flavanones and Flavones with Flower Extracts of Sinningia cardinalis

Flavonoid Biosynthesis, Chalcone Synthase, Flavonoid 3'-Hydroxylase, Flavone Synthase II, Sinningia cardinalis Flowers of Sinningia (syn. Rechsteineria) cardinalis contain glycosides of the flavones apigenin (4'-O H ) and luteolin (3',4'-O H ) respectively, and of the related 3-deoxyanthocyanidins apigeninidin and luteolinidin. Studies on substrate specificity of the key enzyme o f flavonoid bi...

متن کامل

Isolation and characterization of GtMYBP3 and GtMYBP4, orthologues of R2R3-MYB transcription factors that regulate early flavonoid biosynthesis, in gentian flowers

Flavonoids are one of the major plant pigments for flower colour. Not only coloured anthocyanins, but also co-pigment flavones or flavonols, accumulate in flowers. To study the regulation of early flavonoid biosynthesis, two R2R3-MYB transcription factors, GtMYBP3 and GtMYBP4, were identified from the petals of Japanese gentian (Gentiana triflora). Phylogenetic analysis showed that these two pr...

متن کامل

Generation of blue chrysanthemums by anthocyanin B-ring hydroxylation and glucosylation and its coloration mechanism

Various colored cultivars of ornamental flowers have been bred by hybridization and mutation breeding; however, the generation of blue flowers for major cut flower plants, such as roses, chrysanthemums, and carnations, has not been achieved by conventional breeding or genetic engineering. Most blue-hued flowers contain delphinidin-based anthocyanins; therefore, delphinidin-producing carnation, ...

متن کامل

Studies on Columnidin Biosynthesis with Flower Extracts from Columnea hybrida

Columnidin, the characteristic 3-deoxyanthocyanidin of some Columnea species, possesses the 3',4'-B-ring hydroxylation pattern of luteolinidin and an additional hydroxyl group at the A-ring, most likely in the 8-position. Studies on substrate specificity of chalcone synthase and flavanone 4-reductase and the demonstration of high flavonoid 3'-hydroxylase activity revealed that the 3'-hydroxyl g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016